Drought prospects 2006

February 2006
Contents

Summary 2
1 Introduction 4
2 State of water resources 4
 2.1 Rainfall 4
 2.2 River flows 8
 2.3 Groundwater 8
 2.4 Reservoirs 8
 2.5 Environmental impact 12
3 Outlook for spring and summer 2006 12
 3.1 Weather forecast 12
 3.2 Rainfall scenarios 12
 3.3.1 Kent and Sussex 13
 3.3.2 The rest of the south east, including Essex and south Cambridgeshire 15
 3.3.3 The rest of England and Wales 16
4 Conclusions and recommendations 17
 4.1 Water companies 17
 4.2 Farmers 18
 4.3 The Environment Agency 19
Appendix I Error! Bookmark not defined.
Appendix II Error! Bookmark not defined.
Summary

The drought in south east England started in November 2004 and has continued through the winter of 2005-06. Groundwater levels and river flows are very low, and in some places are the lowest on record.

Across south east England, rainfall has been much lower than for the same period in 1974-76, and in some places it is the lowest since the drought of 1920-22. Continued dry weather through the spring and into the summer would give us one of the most serious droughts of the last hundred years. We must act now to minimise the impact of drought on water supplies and the environment this summer.

Even average rainfall for the rest of the winter will make water supply management difficult in much of south east England. If rainfall continues to be below average, the environment will suffer and many drought measures will be needed.

Current indications from the UK Met Office for February to April suggest:

- Warmer than average weather across the UK.
- Drier than average weather in the north.
- In the south, there are equal probabilities of dry, normal or wet weather.

The Met Office tells us that there is considerable uncertainty in these long-range predictions. This forecast suggests that we must treat very seriously the possibility of continued dry weather through the spring.

Water companies in south east England should:

- Maintain and publicise current hosepipe bans.
- In areas without hosepipe bans, introduce them from early April at the latest.
- Apply for non-essential use bans to restrict uses of water such as window washing and building washing before applying for drought permits or orders to take more water from rivers and groundwater.
- Make sure that customers understand the severity of this drought, with clear publicity campaigns.
- Provide clear information and advice to customers on how they can save water in the home. This could include publicity campaigns either individually or with other water companies.
- Increase leakage control activity to make sure that leaks are found and fixed as quickly as possible, reducing the waste of water.
- Work with large industrial water users to look for significant short-term savings in water use.
- Follow their drought plans and make sure that steps to save water are taken in good time.
- Prepare to make drought permit and drought order applications in line with their drought plans, as soon as it becomes clear that they will be necessary.
- Make sure that drought management responsibilities are assigned clearly, so that there is no unnecessary delay in decision-making.
- Work together to make best use of available resources across south east England, using transfer schemes to move water to places where it is needed most.
It is imperative that water companies in south east England act now to make the best use of the limited water available to them. This will help to avoid unnecessary damage to the environment. Water companies must take their own decisions about the steps they take to manage the consequences of drought. If companies choose to ignore our recommendations they must be prepared to defend their approach to their customers and regulators. Any delay increases the risk, later in the year, of extreme steps to manage public water supply, such as the introduction of standpipes and rota cuts.

London already has a deficit in water supply – in a long drought, there is insufficient water to meet all demand. The reservoirs serving London are at good levels now, but flows in the Thames are already low. With low groundwater levels, we expect very low flows this summer. This will limit the water available to refill Thames Water’s reservoirs through the summer. Thames Water must work to ensure that best use is made of the water it has now.

The Environment Agency will:

- Provide regular progress reports for Ministers.
- Monitor water companies’ activities to make sure that they take all possible steps to manage drought.
- Increase monitoring of rainfall, river flows, groundwater levels and the environment.
- Continue weekly reporting on drought on our internet site.
- Update our computer modelling regularly to provide the best possible information about the impact of drought.
- Provide clear information for the public on how they can report environmental problems and how they can help to save water.
- Provide the best information we can on the impact on agriculture, including possible restrictions on spray irrigation.
- Take steps to protect the environment from drought, including:
 - Where we have them, using our river support schemes to maintain flows and protect wildlife;
 - Restricting spray irrigation where this will provide significant benefit to the environment;
 - Apply for drought orders where these will mitigate the impact of drought on the natural environment.
- Report publicly on the impact of the drought on the environment and wildlife.
- Apply for drought orders on behalf of water companies where we believe that inaction is putting water supplies at unacceptable risk.

We will report again on prospects for summer 2006 in April.
1 Introduction

This report looks at prospects for water resources for the summer of 2006. We review the state of water resources now and make recommendations for action by water companies and other abstractors.

The drought in south east England started in November 2004 and has continued into the winter of 2005-06. We are now in a good position to look forward to spring and summer 2006 and identify the areas most at risk from drought.

This report looks at:

- The current state of water resources – rainfall, river flows, groundwater levels and reservoir levels (Section 2).
- The outlook for the summer, under different possible scenarios of rainfall (Section 3).
- Recommendations for action by water companies and other abstractors (Section 4).

2 State of water resources

2.1 Rainfall

Winter rainfall is especially important for water resources, as it fills reservoirs, rivers and groundwater. Winter 2004 was dry across England and Wales, with about two-thirds of average rainfall between November and March. Southern England was particularly dry, with parts of the south east having less than 60% of average rainfall over the winter.

Summer 2005 had near average rainfall across England and Wales, with between 80 and 90% of average rainfall across most of south east England.

October 2005 was wet everywhere. The rainfall increased river flows and groundwater levels started to rise. November 2005 had near-average rainfall except in south east and eastern England, where there was 70 to 80% of average rainfall. December 2005 was another dry month throughout England and Wales, with the driest weather in the north, the Midlands and the east. January 2006 has been exceptionally dry, with most of England and Wales having less than a third of average rainfall for the month.

Figure 1 shows total rainfall as a percentage of average for October 2004 to January 2006. Figure 2 shows rainfall from October 2005 to January 2006, demonstrating how dry this winter has been.

A long sequence of dry weather with two dry winters is very unusual. Over much of south east England the period from October 2004 to January 2006 was much drier than the same months of the notable drought of 1974-76. In the Thames Valley, this period has been as dry as the same months in 1932-34, which was the third driest period in the last hundred years. Further south, the rainfall has been even lower than the same period in 1932-34 but still some way above the exceptionally dry weather of 1920-1922 (figure 3).
Figure 1 Cumulative rainfall from October 2004 to January 2006 as a percentage of the long-term average.
Figure 2 Cumulative rainfall from October 2005 to January 2006, as a percentage of the long-term average.
Figure 3 A comparison of cumulative rainfall over a 16-month period for different drought years.

Southern region

Thames region

Source: Met Office/Centre for Hydrology & Ecology

Environment Agency Drought prospects 2006
2.2 River flows

In most of the north, west and Midlands, river flows are below average but in the normal range for January or February.

Flows are lowest in the south east and the east of England (figure 4). In these areas, most rivers rely on groundwater for some of their flow. In some rivers, flow was as low as a quarter of the average for January – some of these flows would even be considered low in June.

2.3 Groundwater

Groundwater levels in south east England are very low (figure 5). October’s high rainfall started recharge and groundwater levels in most of the chalk began to increase. Dry weather in November, December, January and early February has meant that recharge has been very slow. In some parts of Kent and Sussex, groundwater levels have started to fall again. There are also very low groundwater levels in the Chilterns and the Lee Valley, north of London. In all of these areas, groundwater is important for public water supply. In southern England, 70% of water supply is from groundwater.

In some places, groundwater levels are close to or below the lowest levels on record for January.

2.4 Reservoirs

Most water company reservoirs are at lower levels than average for the time of year, but should present no problems over the summer (figure 6). In January, reservoirs are normally close to full.

Thames Water’s London reservoirs are close to 90% full: levels fell to about 60% by the end of the summer of 2005 but higher flows in October and November allowed the reservoirs to be filled.

Some reservoirs in the south east are at very low levels. Weir Wood, a small reservoir in East Sussex, has been about 35% full for most of 2005. Weir Wood is owned by Southern Water but also supplies South East Water. Bewl Reservoir, in Kent, is also about 35% full: this is the lowest level that the reservoir has ever reached. Bewl provides about a third of the supply for Southern Water’s Kent Medway zone, with a total population of about 400,000. Bewl also supplies water to Mid Kent Water. Southern Water has been granted a drought permit to allow it to pump more water into Bewl Water. This should help to increase Bewl’s level over the rest of the winter and spring.
Figure 4 River flows in England and Wales in January 2006.

(C) Crown Copyright. All rights reserved. Environment Agency, 100026380, 2006.
Figure 5 Groundwater levels in England and Wales at the end of January 2006.
Figure 6 Reservoir levels in England and Wales at the end of January.
2.5 Environmental impact

Across south east England, many springs have not risen this winter and many stream headwaters are dry. However, most streams and rivers are flowing and the impact on aquatic plants and animals this winter has been low. There have been some fish deaths where fish have been caught in pumps and culverts: some of these are linked to low river flows and reservoir levels but the numbers are small. On some rivers, fish spawning this winter has been limited.

On impermeable catchments in the north and west, flows respond quickly to rainfall. This means that a return to wetter weather will lead to rapid increases in flow in these areas. In contrast, on the permeable geology of the east and the south east of England, rivers respond much more slowly because much of their flow comes from groundwater.

3 Outlook for spring and summer 2006

3.1 Weather forecast

Current indications from the UK Met Office for February to April suggest:

- Warmer than average weather across the UK.
- Drier than average weather in the north.
- In the south, there are equal probabilities of dry, normal or wet weather.

The Met Office tells us that there is considerable uncertainty in these long-range predictions. This forecast suggests that we must treat very seriously the possibility of continued dry weather through the spring.

3.2 Rainfall scenarios

As precise rainfall forecasts are extremely difficult, we have considered the consequences of three different rainfall scenarios. These are:

- 60% of average rainfall from February to April – rainfall of this level or below for this period occurs once every eight to ten years, on average;
- 80% of average rainfall from February to April – rainfall of this level or below occurs about one in three years;
- Average rainfall from February to April – rainfall is average or above roughly every other year.

We have looked at the February to April period because rainfall over the rest of the winter and spring determines the outlook for water resources for the summer. After April rainfall tends to contribute little to groundwater or reservoir levels. Our assessment is based on modelling of these rainfall scenarios on river flows and groundwater levels, as well as on information from water companies. Examples of modelled river flows and groundwater levels are given in Appendix 1.
We have divided our assessment into three areas to reflect different risks this summer. These areas are shown in Figure 7.

3.3.1 Kent and Sussex

This area is at the highest risk from drought in summer 2006.

Average rainfall between February and April would allow groundwater levels to improve but they would still be low at the start of the summer. River flows would be lower than average through the summer. Most reservoirs would start the summer close to full but Weir Wood reservoir would still be at a low level. Many groundwater sources would continue to provide normal volumes of water but some would become unreliable as groundwater levels drop.

Public water supply would be difficult to manage, though problems would probably be localised rather than widespread. There would be hosepipe bans, restrictions on other water use and more drought permits and drought orders.

Farmers would find that groundwater and surface water sources would be less reliable than normal. If the summer is hot and dry, it would be necessary to introduce restrictions on spray irrigation.

The environment will be at risk as a result of river flows that are lower than average. Some springs and stream heads will be dry for a second year. There may be changes in vegetation and sedimentation.

80% of average rainfall between February and April would give some recovery of groundwater levels but they would be much lower than normal at the start of the summer. River flows would be very low through the summer. Most reservoirs would start the summer at below average levels. Bewl would probably be 80 to 90% full. Weir Wood would still be at a very low level.

Public water supply would be difficult to manage, with widespread hosepipe bans and restrictions on water use and more drought permits and drought orders through the spring and summer. The ability of water companies to deal with additional problems, such as pollution incidents, would be very limited.

Farmers would find that groundwater and surface water sources to be unreliable and could expect some restrictions on spray irrigation.

The environment would be a very high risk as a result of very low flows. Many springs and stream heads would be dry. There would be a high risk of fish kills, and pollution incidents could cause serious environmental damage.
Figure 7 Areas at risk from drought in summer 2006

Level of drought risk for Summer 2006
- High risk
- At risk
- Normal risk

(C) Crown Copyright. All rights reserved. Environment Agency, 100026380, 2006.
60 % of average rainfall from February to April would give very little further recovery of groundwater levels in Kent and Sussex. In some places, groundwater levels would fall through the rest of the winter. River flows would be exceptionally low through the winter and into the summer: in some places, they would reach record minimum levels. Reservoirs would start the summer at below average levels. Bewl might only be 50 to 60 % full, and Weir Wood would be at a very low level.

Public water supply would be very difficult to manage. Widespread restrictions on water use would be essential. There would be many drought permit and order applications. There would be a risk, later in the year, of extreme steps to manage public water supply, such as the introduction of standpipes and rota cuts.

Farmers would find groundwater and surface water sources to be very unreliable and could expect restrictions on spray irrigation.

The environment would be at a very high risk from low flows and low groundwater levels. Many stream heads would migrate downstream, and there would be many fish kills and other serious environmental incidents.

3.3.2 The rest of the south east, including Essex and south Cambridgeshire

This area is at risk from drought in summer 2006. This area includes the Thames Valley and London, as well as Essex and south Cambridgeshire.

Average rainfall from February to April would give some recovery of groundwater levels, but most would be lower than average by the start of the summer. River flows would be lower than average through the summer, but most would be in the normal range for the time of year. Most reservoirs would start the summer full or close to full. In this area, average rainfall would mean that water resources in summer 2006 would be similar to those of summer 2005.

Public water supply would require careful monitoring and management throughout the summer, especially during periods of hot weather. There would be restrictions on garden watering. There would be a handful of drought permits and orders to deal with specific local problems, especially in areas where water supply depends on groundwater sources.

Farmers would find that groundwater and surface water sources to be less reliable than normal. If the summer is hot and dry, it could be necessary to introduce restrictions on spray irrigation.

The environment would be at risk from low flows and low groundwater levels. In some places there would be environmental damage. Any pollution incidents would add further stress to the environment.

80 % of average rainfall from February to April would give some recovery of groundwater levels, but groundwater levels over much of the area would be much lower than average by the start of the summer. River flows would be much lower than average through the summer. Most reservoirs would start the summer full or close to
full. In this area, 80% of average rainfall would mean that summer 2006 would be more difficult to manage than summer 2005.

Public water supply would be difficult to manage, though problems would probably be localised rather than widespread. There would be restrictions on garden watering and more drought permits and drought orders. The ability of water companies to deal with additional problems, such as pollution incidents, would be limited.

Farmers would find groundwater and surface water sources to be less reliable than normal. Some restrictions on spray irrigation would be necessary.

The environment would be at risk from low flows and low groundwater level. There would be environmental damage in many parts of the south east with fish kills and changes to vegetation and sedimentation.

60% of average rainfall from February to April would give limited recovery of groundwater levels in most parts of the area. Groundwater levels over much of the area would be far lower than average by the start of the summer. River flows would be much lower than average through the summer, with the possibility of some flows at record low levels. Some reservoirs would start the summer at lower than average levels, though most would be in the normal range. In this area, 60% of average rainfall would mean that summer 2006 would be much more difficult to manage than summer 2005.

Public water supply would be difficult to manage, with widespread problems, especially if the summer is hot. There would be restrictions on garden watering and other uses of water. There would be many drought permits and orders.

Farmers would find groundwater and surface water sources unreliable. Restrictions on spray irrigation would be necessary.

The environment would be at a significant risk as a result of very low flows. Many springs and stream heads would be dry. There would be a high risk of fish kills, and even minor pollution incidents could cause serious environmental damage.

3.3.3 The rest of England and Wales

All of England and Wales has had a dry winter. This area is at a lower risk from drought in summer 2006 but there may be localised problems. For example, some rivers may suffer from low flows and some groundwater levels may be low.

60% of average rainfall from February to April would give river flows and groundwater levels lower than normal but in most places this would cause no particular problems. Most reservoirs would start the summer close to full.

Public water supply would require careful management but there should be few problems. A hot, dry summer could lead to restrictions on water use such as garden watering by August, possibly covering large areas.

Farmers would find that their surface and groundwater sources would be less reliable than normal. There could be restrictions on irrigation towards the end of the irrigation season, especially if the summer is hot and dry.
The environment should not suffer from too many problems, though there could be isolated incidents related to lower than average flows.

4 Conclusions and recommendations

Across south-east England, rainfall over the last 16 months has been much lower than for the same period in 1974-76, and in some places it is the lowest since 1921. Continued dry weather through the spring and into the summer would give us one of the most serious droughts of the last hundred years. We must act now to minimise the impact of drought on water supplies and the environment this summer.

4.1 Water companies

Across south east England, including Essex and south Cambridgeshire, there is significant risk to public water supply in summer 2006. Water companies across the whole of this area should:

- Maintain and publicise current hosepipe bans.
- In areas without hosepipe bans, introduce them from early April at the latest.
- Apply for non-essential use bans to restrict uses of water such as window washing and building washing before applying for drought permits or orders to take more water from rivers and groundwater.
- Make the situation clear with publicity campaigns aimed at customers.
- Provide clear information and advice to customers on how they can save water in the home. This could include publicity campaigns either individually or with other water companies.
- Increase leakage control activity to make sure that leaks are found and fixed as quickly as possible, reducing the waste of water.
- Work with large industrial water users to look for significant short-term savings in water use.
- Follow their drought plans and make sure that steps to save water are taken in good time.
- Prepare to make drought permit and drought order applications in line with their drought plans, as soon as it becomes clear that they will be necessary.
- Make sure that drought management responsibilities are assigned clearly, so that there is no unnecessary delay in decision-making.
- Work together to make best use of available resources across south east England, using transfer schemes to move water to places where it is needed most.

Water companies must make sure that they are planning adequate mitigation of the environmental impact of drought permits and drought orders. This includes working with local groups to understand their concerns and provide solutions that provide good protection for the environment.

It is imperative that water companies in south east England act now to make the best use of the limited water available to them. This will help to avoid unnecessary damage to the environment. Water companies must take their own decisions about the steps they take to manage the consequences of drought. If companies choose to ignore our recommendations they must be prepared to defend their approach to their customers.
and regulators. Any delay also increases the risk, later in the year, of extreme steps to manage public water supply, such as the introduction of standpipes and rota cuts.

London already has a deficit in water supply – in a long drought, there is insufficient water to meet all demand. The reservoirs serving London are at good levels now, but flows in the Thames are already low. With low groundwater levels, we expect very low flows this summer; this will limit the additional water available to refill Thames Water’s reservoirs through the summer. Thames Water must work to ensure that best use is made of the water it has now. This includes making further progress on leakage control, and making sure that water users in London understand the gravity of the situation. The Thames will be particularly vulnerable this year to pollution incidents.

Water companies in the rest of England and Wales may also see some drought problems this summer. In these areas, water companies should:

- Monitor the situation carefully and be ready to take action as soon as it becomes necessary.
- Provide clear information to customers about the risk to public water supply in their area.
- Make sure that possible drought permit and drought order applications are ready, with adequate supporting environmental information.

All water companies must follow their drought plans and take appropriate action as soon as it becomes necessary. Drought plans will be under great scrutiny this spring as water companies consult publicly on their new plans.

Water companies should also note that restrictions on non-essential uses of water should usually precede applications for drought permits or drought orders.

4.2 Farmers

Farmers in south east England will find that their sources of water are less reliable than normal this year. The impact will depend on the characteristics of the source. Farmers should:

- Assess the reliability of their own source of water and take this into account when planning crops for the year.
- Make sure that they use all abstractions as efficiently as possible this year, by checking equipment, making sure that irrigation water is directed to the crops that need it, and planning irrigation scheduling carefully to make best use of water.
- We will discuss with Defra and farmers’ representatives how to minimise the impact of the drought on the reliability of irrigation supplies.
4.3 The Environment Agency

The Environment Agency will:

- Provide regular progress reports for Ministers.
- Monitor water companies’ activities to make sure that they take all possible steps to manage drought.
- Increase monitoring of rainfall, river flows, groundwater levels and the environment.
- Continue weekly reporting on drought on our internet site.
- Update our computer modelling regularly to provide the best possible information about the impact of drought.
- Provide clear information for the public on how they can report environmental problems and how they can help to save water.
- Provide the best information we can on the impact on agriculture, including possible restrictions on spray irrigation.
- Take steps to protect the environment from drought, including:
 - Where we have them, using our river support schemes to maintain flows and protect wildlife;
 - Restricting spray irrigation where this will provide significant benefit to the environment;
 - Apply for drought orders where these will mitigate the impact of drought on the natural environment.
- Report publicly on the impact of the drought on the environment and wildlife.
- Apply for drought orders on behalf of water companies where we believe that inaction is putting water supplies at unacceptable risk.

We will report again on prospects for summer in April 2006.
Appendix I

Sites used in modelling of future river flows and groundwater levels.

(C) Crown Copyright. All rights reserved. Environment Agency, 100026380, 2006.
Predicted river flows with 60%, 80% and 100% rainfall scenarios.

River Thames at Eynsham

River Thames at Kingston
River Lee at Feildes Weir

Great Stour at Horton
River Ouse at Barcombe

Western Rother at Hardham
Itchen at Highbridge
Predicted groundwater levels with 60%, 80% and 100% rainfall scenarios.

Lilley Bottom – Chalk

Rockley – Chalk
Ashley Green – Chalk

![Graph showing water levels and rainfall comparison for Ashley Green – Chalk over the period from February 2005 to January 2007. The graph displays the percentage of average rainfall with 100%, 80%, and 60% levels indicated. The water levels are marked with max, mean, min, and actual levels lines.]
Appendix II

The following table contains reservoir levels that were used in Figure 6.

<table>
<thead>
<tr>
<th>Region</th>
<th>Reservoir</th>
<th>% Full</th>
<th>Date of Reading</th>
<th>Descriptive Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglian</td>
<td>Grafham</td>
<td>85</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Rutland</td>
<td>80</td>
<td>31/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Pitsford</td>
<td>82</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Alton</td>
<td>82</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Covenham</td>
<td>94</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Hollowell</td>
<td>81</td>
<td>31/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Ravensthorpe</td>
<td>74</td>
<td>31/01/06</td>
<td>Notably low</td>
</tr>
<tr>
<td></td>
<td>Ardleigh</td>
<td>81</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Abberton</td>
<td>68</td>
<td>31/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Hanningfield</td>
<td>83</td>
<td>31/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td>Midlands</td>
<td>Clywedog</td>
<td>89</td>
<td>01/02/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Derwent Valley</td>
<td>95</td>
<td>30/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td>North East</td>
<td>Teesdale Group</td>
<td>94</td>
<td>29/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Kielder</td>
<td>93</td>
<td>29/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Washburn Group</td>
<td>87</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Bradford Supply Group</td>
<td>82</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td>North West</td>
<td>NCZ Regional Group</td>
<td>89</td>
<td>29/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Vrynwy</td>
<td>91</td>
<td>29/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td>Southern</td>
<td>Bewl</td>
<td>37</td>
<td>01/02/06</td>
<td>Exceptionally low</td>
</tr>
<tr>
<td></td>
<td>Ardingly</td>
<td>65</td>
<td>30/01/06</td>
<td>Exceptionally low</td>
</tr>
<tr>
<td></td>
<td>Darwell</td>
<td>69</td>
<td>01/02/06</td>
<td>Notably low</td>
</tr>
<tr>
<td></td>
<td>Weir Wood</td>
<td>36</td>
<td>01/02/06</td>
<td>Exceptionally low</td>
</tr>
<tr>
<td></td>
<td>Powdermill</td>
<td>77</td>
<td>01/02/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Arlington</td>
<td>93</td>
<td>31/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Bough Beech</td>
<td>71</td>
<td>29/01/06</td>
<td>Notably low</td>
</tr>
<tr>
<td>South West</td>
<td>Clatworthy</td>
<td>100</td>
<td>23/01/06</td>
<td>Above normal</td>
</tr>
<tr>
<td></td>
<td>Blagdon</td>
<td>77</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Chew Valley</td>
<td>74</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Colliford</td>
<td>60</td>
<td>29/01/06</td>
<td>Notably low</td>
</tr>
<tr>
<td></td>
<td>Roadford</td>
<td>69</td>
<td>29/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Wimbleball</td>
<td>84</td>
<td>29/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Stithians</td>
<td>83</td>
<td>29/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td>Thames</td>
<td>London Group</td>
<td>91</td>
<td>01/02/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Farmoor</td>
<td>95</td>
<td>01/02/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Lower Lee Group</td>
<td>90</td>
<td>02/02/06</td>
<td>Normal range</td>
</tr>
<tr>
<td>Wales</td>
<td>Celyn</td>
<td>93</td>
<td>30/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Brenig</td>
<td>100</td>
<td>30/01/06</td>
<td>Above normal</td>
</tr>
<tr>
<td></td>
<td>Llyn Brianne</td>
<td>95</td>
<td>30/01/06</td>
<td>Below normal</td>
</tr>
<tr>
<td></td>
<td>Big Five Group</td>
<td>97</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
<tr>
<td></td>
<td>Elan Valley Group</td>
<td>98</td>
<td>30/01/06</td>
<td>Normal range</td>
</tr>
</tbody>
</table>